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In the calculation of axially-symmetric turbulent boundary layers it is 
usual to neglect the effect of lateral surface curvature on the form of 
the velocity profile and on other characteristics of the layer, inasmuch 
as the thickness 8 of the boundary layer is assumed to be very much 
smaller than the lateral radius of curvature rv for the axially-symmetric 
surface [ 1.2.3 1. 

This paper propounds an approximate solution for the problem of the 
axially-symmetric turbulent boundary layer on a convex or concave surface, 
taking into account longitudinal pressure gradient and lateral surface 
curvature. In the limiting case r. -t m the solution obtained goes over 
into the familiar solution for the plane boundary layer on a curvilinear 
surface. In the limiting case of zero longitudinal pressure gradient, we 
obtain the solution of the problem of au axially-symmetric turbulent 
boundary layer on a cylinder (convex surface [ 4 1) or in a slightly di- 
verging duct (concave surface [ 5 I). 

An investigation of the properties of & boundary layer for zero longi- 
tudinal pressure gradient, and also of the parameters of the layer at a 
point of separation. allows certain conclusions to be drawn as to the 
effect of lateral surface curvature on the form of the velocity profile 
and on the properties of the turbulent boundary layer. In conclusion, 
calculated and experimental values for the drag coefficient of long 
cylinders in axial flow are compared. 

Gn the basis of the results obtained, a solution may be built up for 
certain turbulent boundary-layer problems, for example, the rotational 
body, the axially-evnmetric diffuser, the initial portion of a circular 
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pipe, and so on. 

1. The velocity profile and the resistance law. We will consider longi- 

tudinal flow of a viscous incompressible fluid about a body of revolution 

or in an axially-symmetric diffuser. We will choose a curvilinear system 

of coordinates. The x-axis is directed along a generator and the y-axis 

along a normal to the surface. In these coordinates the differential 
equations, describing the steady mean flow in a turbulent boundary layer 

on a cylinder or in a duct, have the form 

+ a (To) _ O 
a!! 

(l.lj 

where r is the radius of an annular element of the boundary layer, u and 

v are the longitudinal and normal velocity components respectively in the 

boundary layer, p is the density of the fluid, p is the pressure, and r 

is the shear stress in the boundary layer. At the same time, r = rw + 

cos 8 for the case of a convex surface and r = r* - y cos 8 for the case 

of a concave surface. where r. is the cross-sectional radius of the convex 

or concave surface, and 8 is the angle between the axis of symmetry and 

a tangent to a meridional generator of the axially-symmetric surface. 

Since ~08 e 5 1, we may write with a good degree of approximation 

r = ‘,Uf Y (‘1.2) 

Here and later, the 

to a concave surface. 

upper sign will refer to a convex and the lower 

To obtain a formula for the velocity distribution in the turbulent 

boundary layer on a convex or concave surface, we will expand the product 

r in the neighborhood of the surface in a Maclaurin series, 

it (rr) 
rT=rwTw$ - r 1 a?/ .u=n 

I+;[qq=oY2+ 1.. 

where tW is the shear stress at the surface. The coefficients of the 

series are found by successive differentiation of the first of equations 

(1.1). taking into account the second equation and the boundary condi- 

tions at the surface, 

(where p is the coefficient of viscosity and v is the kinematic viscosity 

of the fluid). For not too large distances from the surface, therefore, 
it is correct to terms of third order to out approximately 
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Thus, the laws for the variation of shear stress in the vicinity of 
convex and concave surfaces are described by the same equation. Only the 
magnitude r entering in equation (1.3) is determined differently for 
convex and concave surfaces. 

According to the mixing-length hypothesis the shear stress in a turbu- 
lent flow is connected with the mean-velocity gradient by the relation- 
ship 

7 = $2 (?_) (1.4) 

where 1 Is the mixing length. Close to the surface, where the condition 
(1.3) is fulfilled, the mixing length may be taken as proportional to the 
distance from the surface, 1 = ky, where k is a dimensionless quantity to 
be determined experimentally. 

Substituting (1.4), (1.2). and 1 = ky in (1.3), we obtain the diffe- 
rential equation 

au ?‘* ~ VI + hy” 
.~ 

ay k-- Y” 1’ 1 f 6”~” 

where v is the friction velocity. Integrating this equation and determin- 
ing theOconstant of integration from the condition that at the outer edge 
of the layer (y = 6) the longitudinal velocity component in the boundary 
layer is equal to the velocity II in the outer potential stream in the 
case of external flow (convex surface) or to the velocity II in the core 
of the stream In the case of a duct (concave surface), we obtain an ex- 
pression for the velocity profile 

u 
1-t’ Iny’-ln 

{ 

2 + (h f 6”) y” + 2 Y(1 + Ay”) (1 f- 6”y”) -r 
IT= ~ 2 + k Ik 6” + V(l + A) (1 h 6”) f 1/F FL2 

(z2LLj (1.5) 

where for a convex surface 

F, = In 
‘h + 8” + 2Wy” + 2 I’ h3” (1 + hy”) (1 + 6”y”) 

x + 6” + 2h8” + 2 V-w (1 + h) (2 + 8”) 

and correspondingly for a concave surface 

( I+ hy" 
FZ = sin-l 1 -226” 6” 

1 +a\ 
-sin-l l-IPm+ 

t 

The formulas (1.5) are suitable for arbitrary positive longitudinal 
pressure gradients and for negative pressure gradients which are small in 
absolute magnitude. Indeed, it follows from (1.3) that for x < - 1, the 
tangential stress becomes negative near the outer edge of the layer. with 
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the result that formulas (1.51 lose their significance for x < - 1. Thus 
the range of possible values determined for the parameter A, which 
characterizes the effect of longitudinal pressure gradient, is -1 < x < m, 
and for the parameter 6’, which characterizes the effect of lateral sur- 
face curvature, is 0 S 6’ < 00 (convex surface1 and 0 S 6’ < 1 (concave 
surface). 

The formulas (1.5) only apply beyond a certain distance from the sur- 
face, inasmuch as the turbulent fluctuations die out very close to the 
wall and viscous friction becomes important. 

To establish a resistance law connecting A, L, 6’ and Rr = Ur,/v, we 
will consider the flow in the laminar sublayer immediately adjoining the 
surface. Inside this laminar sublayer the tangential stress is determined 
by the formula r = p d u/d y . Substituting this expression in (1.31. the 
resulting differential equation may be integrated and the constant of 
integration determined from the condition that the velo&ity u vanishes at 

the surface. We obtain 

(1.6) 

To obtain the resistance law it is necessary to equate the velocities 
determined from (1.5) and (1.6) at the outer edge of the laminar sublayer 
(y = 61). where these formulas are equally valid. However, it is first 
necessary to determine the thickness of the lamlnar sublayer. The thick- 
ness of the lamlnar sublayer may be determined from the well-known rela- 
tionship of Karman, 8, = QV/V*. However, in contrast to the simplest case 
of the turbulent boundary layer on a flat plate, for which the quantity 
a is constant, in the general case considered here the quantity a will 
depend on the longitudinal pressure gradient and on the lateral curvature 
of the surface. 

Thus. comparing (1.5) and (1.6) for ylo = 6I/6 = a/R., where 3. = 

v 6/v, we obtain the expression for the resistance law 
l 

In which the quantities F1 ,(A. So, a/R ) are equal respectively to F1 
and F2 with y” = a/R and k = (k/z)6’R:. 

l l 

The expressions (1.5) for the velocity profile, together with the re- 
sistance law (1.7) and the integral relationship of Karman, 
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(1.8) 

allow the problem of the axially-symmetric turbulent boundary layer to be 

solved completely, since there are three equations to determine the three 
unknowns 8*, 6**, and c . Here 

2~~~~2~j6-Gj(,.,),=,,~,j!,-~):~*~’~’~d,’ 
0 0 

are respectively the displacement thickness, the momentum thickness, and 
the full thickness of the boundary layer. At the same time it should be 

2x4= Lrf(rlo *y)dy-27rrwX (I*$-) 
0 

noted that the parameters h and z are not independent, since there exists 
between them the relationship 

2. Limiting cases. We will consider a number of special cases. For 

r + -0 

t;e 
which corresponds to a plane curvilinear surface (8’ = 0. h f 0). 

expressions for the velocity profile and the resistance law take the 
form 

u, 1.; = J + $,] g-j-‘1 ‘,~jTi-g__,~j$)_-“,,, ‘~-+I \ 
t,-‘< i ’ -__ 1 l-;-h+-1 I 

(2.1) 
; 

ka’ ?\ 
z = kr + -- 

2 jr++-1 +a--l-1+aa,,i* ) -An -;- + 2 In 
1’1 + ah, H, + 1 

4. * 
1’1$,.+1 

For h = 0 the expressions (1.5) and (1.7) are transformed into the 
velocity profile and the resistance law for the axially-symmetric turbu- 
lent boundary layer on a cylinder 14 1 and in a slightly diverging duct 

r5 I, 

Finally, for x + 0 and 6’ + 0 we obtain the well-known expressions for 
the velocity profile and resistance law of a flat Plate. 
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(2.3) 

At a separation point of an axially-symmetric turbulent boundary layer 

the parameters x and z become infinite, and formulas (1.5) and (1.7) be- 
come indeterminate. On resolving the indeterminacy in question, we obtain 

formulas for the velocity profile and resistance law at a separation 

point of an axially-symmetric boundary layer on a convex surface 

and similarly. on a concave surface 

7t -2gin_l(l - 2s”y”) 
;_ x 

‘dp 
J 

Isvsu --- 
- &in-l (I- 28”) ’ dzplr” --X:2-s~n-l(1-8”) (2.5) 

For 6 + 0 formulas (2.4) and (2.5) become the velocity profile and re- 

sistance law at a separation point for a plane turbulent boundary layer: 

(1.6) 

In all this It is remarkable that the experimentally determined coeffi- 

cient k does not enter into the expressions (2.4)-(2.6) for the velocity 

profile at a point of separation in the boundary layer. The second formula 

for each pair (2.4)-(2.6). like the dimensionless ratios H* = 8*/8, H** = 

8**/8 and fi = 8*/8** computed using the first formula, may be considered 

as a condition for separation of the turbulent boundary layer on a convex, 

concave, or plane surface. 

3. The effect of lateral surface curvature on the form of the velocity 

profile, on the frictional resistance and on the separation parameters 

for a turbulent boundary layer. Certain conclusions may be drawn about 

the effect of lateral curvature of a convex or concave surface on the 

properties of the turbulent boundary layer by considering the case of 

zero longitudinal pressure gradient, corresponding to flow along a cylinder 

or in a slightly diverging duct (diffuser with zero longitudinal pressure 

gradient). In the latter case, since the thickness of the boundary layer 

on the wall of the duct grows more rapidly along the channel than the 

radius, the boundary layers will merge with each other at some distance 

from the channel entrance such that 6 = rw. 

For the case under consideration, 
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8’ 1 _-.._ - 
rw2- z f 

8 .* ---.- 
rw2- rz2Tjq AeZ (1 ‘f AeZ)3 

- 21n (1 + Ae*) 

I 
6 4Ae’ --_ +1/1*a/70Ti 

(1 i :1e*y ’ 
.4 =-- Tk?, 

w 1/1.3Plrc+1 

(3.1) 

For rw + w we will have 

(3.2) 

where 8’ and a** are the displacement and momentum thickness respectively 

for the plane boundary layer. 

CP D.4 0 Qb u4 UC 10 

Fig. 1. 

In the case of zero longitudinal pressure gradient, dp/dx = - pUdfl/dx= 

0. the momentum-integral relationship (1.8) is simplified and for a 

convex surface (cylinder) gives 

X 
cc 1 
-- = 

r 
I” 

k” s z2d;( 
0 

(3.3) 

and for a concave surface (duct) 
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xe 
x 1 22 

.- =- 
l-0 k2 s j-6 dxo 

0 w 
(x0=$) (3.4) 

where r0 is the channel radius at the entrance section and rwo = rl rc. 

The formulas (3.3) and (3.4), together with the first two of the formulas 

(3.1). allow the problem to be formulated completely for the case of ex- 

ternal flow. as the number of unknowns is equal to the number of equations. 

For the case of the duct the number of unknowns is greater, since besides 

e**/rc* and z there is also involved the quantity rwo, for whose deter- 

mination it is necessary to use the equation of efflux 

f,o = (1 - 23*/ rw2fIn 

The initial value L = tO in formulas (3.3) and (3.4) Is determined by 

the condition that the momentum thickness is equal to zero at x = 0. Be- 

cause then 6/r. + 0, the corresponding magnitude zO is eaual to two, just 

as in the case of the plate (cf. the second formula of (3.2)). For rm + - 

formulas (3.3) and (3.4) become the well-known relationship defining the 

function z = z(Rz) for a plate with a fully turbulent boundary layer, 

UX 

i 

a 
RX= y=c1(zx-4z+6)ez-Cz C1=s e -ka, C2 = 2Clea 

During the Integration of (3.3) and (3.4) the quantities k and a were 

taken as identical with the corresponding constants for a plane turbulent 

boundary layer, k = 0.392 and a = 11.5. The calculations were carried out 

for values of the number Rr = lo’, lo5 and 106. 

The curves of u/U against y/6 plotted in Fig. 1 for x/2rw = 10 and 

I$ = 10’ and lo5 show the nature of the effect of lateral surface curva- 

ture on the form of the velocity profile in a turbulent boundary layer. 

For comparison, the same figure also shows the velocity profile in a 

turbulent boundary layer on a flat plate for the same-value of Rx as for 

the convex or concave surface; Rx = Ur/v = Rr(x/rID) = 2Rr(x/d). 

It is seen that the velocity profile in the axially-symmetric turbulent 

boundary layer on a convex surface is more full, and on a concave surface 

is less full, than the velocity profile in the turbulent boundary layer 

on a flat plate. This difference in the velocity profile is particularly 
noticeable at values of z/d sufficiently large so that the thickness of 

the boundary layer becomes comparable to the radius rw (concave surface) 

or appreciably exceeds it (convex surface) (Fig. 1). 

From Pig. 1. and also from epuations (3.1), (3.3), and (3.4), it 
follows that the form of the velocity profile in an axially-symmetric 

turbulent boundary layer Is determined not only by the Reynolds number Rx 

calculated for the length x appropriate for a flat plate, but also by a 
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second parameter Rr or by the combination RJR, = z/r_ = Ix/d. 

Fig. 2. Pig. 3. 

The change in the form of the velocity profile for an axially-symmetric 

boundary layer, tahen together with the altered geometry of the axially- 

symmetric flow, leads to the values of the local and friction coefficients 

and cF for convex and concave surfaces which differ from the corres- 

&ding coefficients 
(cfPl 

and cFpl) for a flat plate at the same value 

of RI. The characteristic variation of the parameters kf= cf/cf , and 

kF = cF/cFpl with x/d is presented in Figs. 2 and 3 for three P va ues of 

Rr = 10’1. lo5 and 106. The data cited indicate that under certain condl- 

tions the effect of lateral surface curvature on the friction drag may 

prove to be very large. 

PI r ’ ’ 1 ’ Convex surface I .m. 1 ‘LJD\ 

Concave Convex 
surface 

Fig. 5. 
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An investigation of the effect of lateral surface curvature on the 

properties of the layer at a point of separation is also of Interest. 

Figure 4 shows velocity profile computed according to formulas (2.4)- 

(2.6) for a separation point in a turbulent layer, and Fig. 5 shows the 

corresponding dependence of H+, H**. H and f = l/k 4 (dp/dx) C8/pV2) on 

It follows that at a separation point in an axially-symmetric turbulent 

boundary layer lateral curvature makes the velocity profile more full on 

a convex surface, but less full on a concave surface, compared to the 

corresponding profile in a plane turbulent layer. It should be observed 

that the magnitudes H* = l/3. R** = l/6 and H= 2 at a separation point 

in a plane turbulent layer are sufficiently close to the corresponding 

experimental values. 

The expressions (1.5) for the velocity profile and (1.7) for the re- 

sistance law in an axially-symmetric turbulent boundary layer, together 

with the quantitative results presented above, point to the existence of 

a certain analogy between the effects of lateral surface curvature and of 

longitudinal pressure gradient. In particular, lateral curvature of a 

convex surface alters the form of the velocity profile and the frictional 

drag coefficients in the same direction as a negative longitudinal 

pressure gradient (effuser effect). On the other hand, lateral curvature 

of a concave surface has an effect on the velocity profile and friction 

drag analogous to the effect of a positive longitudinal pressure gradient 

(diffuser effect). 

a003 

Fig. 6. 

4. Comparison of theory and experiment. In conclusion, we will compare 

experimental values of the mean friction coefficient for long cylinders 

[6 1 with the corresponding theoretical coefficients computed according 
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to the method set forth above (Fig. 8). As is seen from Fig. 8, a suffi- 

ciently good agreement between the experimental and computed values of 
the friction coefficient for the cylinders was found. 
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