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In the calculation of axially-symmetric turbulent boundary layers it is
usual to neglect the effect of lateral surface curvature on the form of
the velocity profile and on other characteristics of the layer, inasmuch
as the thickness & of the boundary layer is assumed to be very much
smaller than the lateral radius of curvature r, for the axially-symmetric
surface [1,2,3].

This paper propounds an approximate solution for the problem of the
axially-symmetric turbulent boundary layer on a convex or concave surface,
taking into account longitudinal pressure gradient and lateral surface
curvature., In the limiting case rp? ® the solution obtained goes over
into the familisr solution for the plane boundary layer on a curvilinear
surface. In the limiting case of zero longitudinal pressure gradient, we
obtain the solution of the problem of an axially-symmetric turbulent
boundary layer on a cylinder (convex surface [4 ]) or in a slightly di-
verging duct (concave surface [5 1),

An investigation of the properties of a boundary layer for zero longi-
tudinal pressure gradient, and also of the parameters of the layer at a
point of separation, allows certain conclusions to be drawn as to the
effect of lateral surface curvature on the form of the velocity profile
and on the properties of the turbulent boundary layer. In conclusion,
calculated and experimental values for the drag coefficient of long
cylinders in axial flow are compared.

On the basis of the results obtained, 8 solution may be built up for
certain turbulent boundary-layer problems, for example, the rotational
body, the axially~svmmetric diffuser, the initial portion of a circular
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pipe, and so on.

1. The velocity profile and the resistance law. We will consider longi-
tudinal flow of a viscous incompressible fluid about a body of revolution
or in an axially-symmetric diffuser. We will choose a curvilinear system
of coordinates. The x-axis is directed along a generator and the y-axis
along a normal to the surface. In these coordinates the differential
equations, describing the steady mean flow in a turbulent boundary layer
on a cylinder or in a duct, have the form

du rdp 1 0(rm) 0 (ru) a(rv) -0

ru.ai—}—rv#_:“—w_

oz oy p dx o oy ' dz oy

(1.1

where r is the radius of an annular element of the boundary layer, u and

v are the longitudinal and normal velocity components respectively in the
boundary layer, p is the density of the fluid, p is the pressure, and r

is the shear stress in the boundary layer. At the same time, r = re+

cos 0 for the case of a convex surface and r = rey = Y cos 0 for the case
of a concave surface, where Ty is the cross-sectional radius of the convex
or concave surface, and 6 is the angle between the axis of symmetry and

a tangent to a meridional generator of the axially-symmetric surface.
Since cos 0 = 1, we may write with a good degree of approximation

r=r,ty (1.2)

Here and later, the upper sign will refer to a convex and the lower
to a concave surface.

To obtain a formula for the velocity distribution in the turbulent
boundary layer on a convex or concave surface, we will expand the product
r in the neighborhood of the surface in a Maclaurin series,

_ 3 (r1) i[az(n)] .
"_rw‘r"’+[ oy ]u=oy+2 W =’ to

where L is the shear stress at the surface. The coefficients of the
series are found by successive differentiation of the first of equations

(1.1), taking into account the second equation and the boundary condi-
tions at the surface,

a(rt) . dp g% (r1) 32 (rt) FoTw 47

w

gy Y dz oy = oy® T v dx

for y == 10)

(where p is the coefficient of viscosity and v is the kinematic viscosity
of the fluid). For not too large distances from the surface, therefore,
it 1s correct to terms of third order to put approximately

dp y - . dp 8 o
rre=r T, (1 e T;) =1, Ty (L+297) (y° y/8, oty Tw’\ (1.3)
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Thus, the laws for the variation of shear stress in the vicinity of
convex and concave surfaces are described by the same equation. Only the
magnitude r entering in equation (1.3) is determined differently for
convex and concave surfaces.

According to the mixing-length hypothesis the shear stress in a turbu-
lent flow is connected with the mean-velocity gradient by the relation-
ship

T=opl? ’?i‘.)z (1.4)

where | is the mixing length. Close to the surface, where the condition
(1.3) is fulfilled, the mixing length may be taken as proportional to the
distance from the surface, [ = ky, where k& is a dimensionless quantity to
be determined experimentally.

Substituting (1.4), (1.2), and ! = ky in (1.3), we obtain the diffe-
rential equation

g vy V4N (502

= o = - *=17z
ay kY ]/1:{:3°1J° \ T ot ' w/F >

where v, is the friction velocity. Integrating this equation and determin-
ing the constant of integration from the condition that at the outer edge
of the layer (y = §) the longitudinal velocity component in the boundary
layer is equal to the velocity U in the outer potential stream in the

case of external flow (convex surface) or to the velocity U in the core
of the stream in the case of a duct (concave surface), we obtain an ex-
pression for the velocity profile

L 14, 24+ 048y +2V 0+ 200 (1 +5%°) ‘/'r,
o ey S e A tV
<-:1r_11‘ (1.5)
i "t)
where for a convex surface
A 8% - 208%° + 2V A8 (1 + ay°) (1 + 8°%°)
A4 804 228° 42V A8 (1 +2) (1 + 3°)

i‘] =In

and correspondingly for a concave surface

14 2y° 14 2\
— -1 __ogo T 27 ) -1 o 1T
F, = sin (1 28 BOH) sin (1 2 55

The formulas (1.5) are suitable for arbitrary positive longitudinal
pressure gradients and for negative pressure gradients which are small in
absolute magnitude. Indeed, it follows from (1.3) that for A< -1, the
tangential stress becomes negative near the outer edge of the layer, with
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the result that formulas (1.5) lose their significance for A < — 1. Thus
the range of possible values determined for the parameter A, which
characterizes the effect of longitudinal pressure gradient, iz —1 < A £
and for the parameter 8°, which characterizes the effect of lateral sur-
face curvature, is 0 < 8° € = (convex surface) and 0 < &° £ 1 (concave
surface).

The formulas (1.5) only apply beyond a certain distance from the sur-
face, inasmuch as the turbulent fluctuations die out very close to the
wall and viscous friction becomes important.

To establish a resistance law connecting A, 2z, 8° and Rr = Ur'/v, we
will consider the flow in the laminar sublayer immediately adjoining the
surface. Inside this laminar sublayer the tangential stress is determined
by the formula 7 = pdu/d y. Substituting this expression in (1.3), the
resulting differential equation may be integrated and the constant of
integration determined from the condition that the velotity u vanishes at
the surface. We obtain

u K, 1
= x B ey [ F g ma e} (1.6)
To obtain the resistance law it is necessary to equate the velocities
determined from (1.5) and (1.68) at the outer edge of the laminar sublayer
(y = 81), where these formulas are equally valid. However, it is first
necessary to determine the thickness of the laminar sublayer. The thick-
ness of the laminar sublayer may be determined from the well-known rela-
tionship of Karman, 81 = av/v.. However, in contrast to the simplest case
of the turbulent boundary layer on a flat plate, for which the quantity
a is constant, in the general case considered here the quantity a will
depend on the longitudinal pressure gradient and on the lateral curvature

of the surface.

Thus, comparing (1.5) and (1.6) for ylo =8,/8 = a/R,, where R =
v 8/v, we obtain the expression for the resistance law
*

24 (A48 a/ R+ 2V ({1 +2ra/R,) (1 +3°a/R,) “mg_i (1.7)
240k +2V (T 4+2)(1£3) R,

kR, 3% a 1 / da " . 0 @
80“‘ {ln (1 + 7{)—}— )\[ﬁ’; + 55 In (1 j:R*)]}:F l/ §°_I'1,2<7" 3°, B*>

/

z=—=In

+

in which the quantities F, Z(K, 8°, a/R.) are equal respectively to F,
and F, with ¥y = a/R‘ and R. = (k/z)SORr.

The expressions (1.5) for the velocity profile, together with the re-
sistance law (1.7) and the integral relationship of Karman,
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dgx*

1 dU c T 2k2)
dx U dz
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(219**+19*)—rw_zﬂ '\cf—'l—/m_'l—?

(1.8)

allow the problem of the axially-symmetric turbulent boundary layer to be
solved completely, since there are three equations to determine the three
unknowns 6*, 0*¢, and ¢ Here

3 1
u

. u 4 o o\ °
21:.‘}*:27\:&(1—7>(fw:i:?/)dy=2“’w8 g(i—"U_)i\i:ts y)dy
0 0
" i u u Q. O\ {~]
2m9** = Omr ,83(1-~)Tl-(1i8y [y

w \ U
0

)

. 8(’
2r0 = 2r | (rw + y) dy = 2mr 3 (1 + -2->

)

are respectively the displacement thickness, the momentum thickness, and
the full thickness of the boundary layer. At the same time it should be
noted that the parameters A and z are not independent, since there exists
between them the relationship

-2

L 8° v dU
A=z (1i»2—>}f,1> (Pz_»lﬁm[—)

2. Limiting cases. We will consider a number of special cases, For
r, > °, which corresponds to a plane curvilinear surface 6% =0, A£ 0),
the expressions for the velocity profile and the resistance law take the
form

1 / - \ T+
W, U =1+ j{ln_l/c’-}—Z(]' T+ -V IF3)—2 11—:__—1/7—1\1—} 2.1)
~ / AT
ko VIFan By +1

I3 \ a
ha R (T )i, VI
pehats, o PO T VT @y R )~ g2 s
For A = 0 the expressions (1.5) and (1.7) are transformed into the
velocity profile and the resistance law for the axially-symmetric turbu-
lent boundary layer on a cylinder [ 4 ] and in a slightly diverging duct

[51,

i

{ ]/‘1———80
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a kR,
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Finally, for A - 0 and 8° - 0 we obtain the well-known expressions for
the velocity profile and resistance law of a flat plate,
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/
w/U =1+ é— In 49, 3=C I-J‘L ze? (\C = % e—"“> (2.3)
At a separation point of an axially-symmetric turbulent boundary layer
the parameters A and :z become infinite, and formulas (1.5) and (1.7) be-
come indeterminate. On resolving the indeterminacy in question, we obtain
formulas for the velocity profile and resistance law at a separation
point of an axially-symmetric boundary layer on a convex surface

(2.4)
In 1+ 28%° 4 2V 8% (1 + 3%°)] dp 5 KV
11111—1—28!'—}-2"‘80(1 -+ 89 ’ dx olJ? _ln[1+23°+2Vm)]

ad
U

and similarly, on a concave surface

u n—28in~1 (1 — 23%°) "dp 8 KV

U™ m—2gip~1(1—23%) " dz pU? “ w2~ gip=1(1— )

(2.5)

For 8 » 0 formulas (2.4) and (2.5) become the velocity profile and re-
sistance law at a separation point for a plane turbulent boundary layer:

/dp 8 k
u 1, P
7 =" 7, V = ST =Y (2.9)

In all this it is remarkable that the experimentally determined coeffi-
cient k does not enter into the expressions (2.4)-(2.6) for the velocity
profile at 8 point of separation in the boundary layer. The second formula
for each pair (2.4)-(2.6), like the dimensionless ratios H* = 0*/0, H** =
0*+/0 and H = 6*/0** computed using the first formula, may be considered
as a condition for separation of the turbulent boundary layer on a convex,
concave, or plane surface.

3. The effect of lateral surface curvature on the form of the velocity
profile, on the frictional resistance and on the separation parameters
for a turbulent boundary layer. Certain conclusions may be drawn about
the effect of lateral curvature of a convex or concave surface on the
properties of the turbulent boundary layer by considering the case of
zero longitudinal pressure gradient, corresponding to flow along a cylinder
or in a slightly diverging duct (diffuser with zero longitudinal pressure
gradient). In the latter case, since the thickness of the boundary layer
on the wall of the duct grows more rapidly along the channel than the
radius, the boundary layers will merge with each other at some distance

from the channel entrance such that § = e

For the case under consideration,
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where 8* and §** are the displacement and momentum thickness respectively
for the plane boundary layer.
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Fig. 1.
In the case of zero longitudinal pressure gradient, dp/dx = — pUdU/dx=

0, the momentum-integral relationship (1.8) is simplified and for a
convex surface (cylinder) gives

x .
z 1 3
= k:;gz?dx (y_ =73 ) (3.3)
0 \

and for a concave surface (duct)
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Xo
z 1 z? 9
= ) 70 dxo <Xo= roE ) (3.4)

0

where ry is the channel radius at the entrance section and r.° =Ty o

The formulas (3.3) and (3.4), together with the first two of the formulas
(8.1), allow the problem to be formulated completely for the case of ex-
ternal flow, as the number of unknowns is equal to the number of equations,
For the case of the duct the number of unknowns is greater, since besides
0“/r02 and z there is also involved the quantity r.o, for whose deter-

mination it 18 necessary to use the equation of efflux
rl =129 /r,Hh

The initial value z = z in formulas (3.3) and (3.4) is determined by
the condition that the momentum thickness is equal to zero at x = 0, Be-
cause then 8/r. -+ 0, the corresponding magnitude zg is equal to two, just
as in the case of the plate (cf. the second formula of (3.2)). Por ry > o
formulas (3.3) and (3.4) become the well-known relationship defining the
function z = ’(Bz) for a plate with a fully turbulent boundary layer,

v -
R = -0 = Cy(— 42+ 6) eF — Cy (cl=,§3—e ke 0, = 2cle2) (3.5)

x v
During the integration of (3.3) and (3.4) the quantities k and a were
taken as identical with the corresponding constants for a plane turbulent
boundary layer, k= 0.392 and @ = 11.5. The calculations were carried out
for values of the number Rr = 10“, 105 and 106.

The curves of u/U against y/8 plotted in Fig. 1 for x/2r' = 10 and
Rr = 10% and 103 show the nature of the effect of lateral surface curva-
ture on the form of the velocity profile in a turbulent boundary layer.
For comparison, the same figure also shows the velocity profile in a
turbulent boundary layer on a flat plate for the same value of Rx as for
the convex or concave surface; Rx = Us/v = Rr(x/r') = ZRr(x/d).

It is seen that the velocity profile in the axially-symmetric turbulent
boundary layer on a convex surface is more full, and on a concave surface
is less full, than the velocity profile in the turbulent boundary layer
on a flat plate. This difference in the velocity profile is particularly
noticeable at values of x/d sufficiently large so that the thickness of
the boundary layer becomes comparable to the radius r_ (concave surface)
or appreciably exceeds it (convex surface) (Fig. 1).

From Fig. 1, and also from equations (3.1), (3.3), and (3.4), it
follows that the form of the velocity profile in an axially-symmetric
turbulent boundary layer is determined not only by the Reynolds number Rz
calculated for the length x appropriate for a flat plate, but also by a
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second parameter Rr or by the combination Rx/Rr = z/r. = 2x/d,
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Fig. 2. Fig. 3.

The change in the form of the velocity profile for an axially-symmetric
boundary layer, taken together with the altered geometry of the axially-
symmetric flow, leads to the values of the local and friction coefficients
c, and g for convex and concave surfaces which differ from the corres-
ponding coefficients (¢ 1 and g l) for a flat plate at the same value
of Rz. The characteristic variation of the parameters k. = cf/cf 1 and
kF.= cF/cF 1 with x/d is presented in Pigs. 2 and 3 for three vafues of
R_= 10%, 10° and 10, The data cited indicate that under certain condi-
tions the effect of lateral surface curvature on the friction drag may
prove to be very large.
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Fig. 4. Pig. 5.
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An investigation of the effect of lateral surface curvature on the
properties of the layer at a point of separation is also of interest.

Figure 4 shows velocity profile computed according to formulas (2.4)-
(2.6) for a separation point in a turbulent layer, and Fig. 5 shows the
corresponding dependence of H*, H**, H and f= 1/k V/(dp/dx)(&/pvz) on
5/r_.

»

It follows that at a separation point in an axially-symmetric turbulent
boundary layer lateral curvature makes the velocity profile more full on
a convex surface, but less full on a concave surface, compared to the
corresponding profile in a plane turbulent layer. It should be observed
that the magnitudes H* = 1/3, H** = 1/6 and H= 2 at a separation point
in a plane turbulent layer are sufficiently close to the corresponding
experimental values.

The expressions (1.5) for the velocity profile and (1.7) for the re-
sistance law in an axially-symmetric turbulent boundary layer, together
with the quantitative results presented above, point to the existence of
a certain analogy between the effects of lateral surface curvature and of
longitudinal pressure gradient. In particular, lateral curvature of a
convex surface alters the form of the velocity profile and the frictional
drag coefficients in the same direction as a negative longitudinal
pressure gradient (effuser effect). On the other hand, lateral curvature
of a concave surface has an effect on the velocity profile and friction
drag analogous to the effect of a positive longitudinal pressure gradient
(diffuser effect).

. e 1 dp 0
H, B, Huf= d—ipU—zms/rw 2 I

0004 \\\ \\:>\~

03
‘7;;\\

/
/
iy

70 75 80 R,
Fig. 6.

4. Comparison of theory and experiment. In conclusion, we will compare
experimental values of the mean friction coefficient for long cylinders
[6 1 with the corresponding theoretical coefficients computed according
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to the method set forth above (Fig., 6). As is seen from Fig. 8, a suffi-
ciently good agreement between the experimental and computed values of
the friction goefficient for the cylinders was found,

1.
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